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Abstract

Analysis of stress fields in a linear elastic—piezoelectric—dielectric medium requires use of anisotropic elasticity theory.
Many researchers employ the Stroh formalism, which requires the solution of a sixth order characteristic equation
involving material coefficients. This equation must be solved numerically for each material composition to obtain the
eigenvalues and eigenvectors that give the resulting field quantities. The focus of this work is the development of a
closed form solution for the electro-mechanical crack tip fields in piezoelectric materials using orthotropic rescaling to
reduce the governing field equations to the biharmonic equation and the Poisson equation. Solutions for an isotropic
linear elastic material are utilized to obtain solutions for the anisotropic piezoelectric material. This leads to closed form
solutions for the fields in terms of ratios of certain elastic, dielectric, and piezoelectric coefficients. Orthotropic rescaling
and the Stroh formalism are compared and recommendations are made for when and when not to use the orthotropic
rescaling approach.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The reliability of piezoelectric materials is of interest due to their abundant applications in smart systems
and structures. Devices which implement piezoelectric materials include active vibration dampers, mirror
positioners, accelerometers, micropumps, and fuel injectors. Although these materials have considerable
technological capabilities, they are limited by fatigue and fracture.

Recent work in the area of fracture mechanics has been focused on determining crack tip fields in
anisotropic piezoelectric materials. The coupled electro-mechanical behavior poses a challenge in obtaining
closed form solutions that describe the field quantities. Ting (1996) has described the Stroh formalism in
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detail for elastic materials. This technique has been extended to piezoelectric materials by Suo et al. (1992),
Pak (1992), McMeeking (1999), and Zhang et al. (2001). Sosa (1990) used a similar technique by deter-
mining a general solution in terms of complex potentials.

Stroh’s formalism makes use of an eigenvector problem that is developed by applying mechanical
equilibrium and charge compatibility to the constitutive equations. A vector potential representing dis-
placement and electric potential is assumed. This automatically satisfies strain compatibility and curl-free
electric field, but involves solving an eigenvector problem that requires the solution of a sixth order
polynomial for each material composition. This makes it very difficult to ascertain the role of material
anisotropy in the fracture process.

A different approach is presented here that explicitly solves the field equations in terms of material
coefficients using a modified orthotropic rescaling approach. Suo et al. (1991) determined the stress fields in
elastic composite materials by employing orthotropic rescaling. In orthotropic elastic solids, the coordinate
axes can be rescaled to obtain the biharmonic equation when a certain ratio of elastic coefficients is unity.
For piezoelectric materials, one additional constraint is necessary. A specific ratio of piezoelectric and
dielectric coefficients decouples the mechanical and electrical terms. When this decoupling ratio is realized
and the biharmonic equation is attained, closed form solutions for the stress components can be deter-
mined. The decoupling coefficient is then utilized to determine the electrical components by solving the
Poisson equation.

The first part of this work summarizes the governing equations and general solutions to the coupled
piezoelectric problem for the two approaches. In the orthotropic rescaling, the rescaling technique and
decoupling coefficients are determined which lead to the biharmonic equation and the Poisson equation in
the rescaled coordinate system. A brief review of Stroh’s formalism is given with emphasis on the relation
between the Stroh complex potentials and the potentials used in the orthotropic rescaling.

The second part of the work applies the orthotropic rescaling and the Stroh formalism technique to the
crack problem in an infinite piezoelectric medium. The two solution techniques are shown to be in exact
agreement when specific ratios of the material coefficients hold. Actual material properties are then applied
and deviations in the predicted stress fields near the crack tip are addressed. A parametric study is con-
ducted to determine the effect of variations in the decoupling coefficient on the maximum principal stress
near the crack tip.

2. Governing equations

The governing equations are presented in indicial notation, with summation implied over repeated
indices. The small strain assumption is used since the results are to be applied to piezoelectric ceramics and
crystals that strain less than 1%. The effect of a polar medium inducing a non-symmetric stress tensor is
neglected. Kamlah (2001) showed that the stress induced by the polarity of the medium is on the order of 1
MPa, negligible relative to the far higher stresses found in the elastic problem. Under these assumptions, the
following field equations govern linear piezoelectric solids.

Mechanical equilibrium of stress is given by the divergence of the second order stress tensor when body
forces are negligible.

The mechanical equilibrium equation is satisfied when the stress is given by the double curl of a second
order potential,

Gij = —Punps CikmEjnl (2.2)
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where @;; is the second order stress potential and €, is the components of the permutation symbol (Weber,
1948). For two-dimensional problems, the second order stress potential reduces to the Airy stress potential
given by Eq. (2.3).

D= ¢33()C1,X2) (23)
In this case the stress field is represented by the following equation,
Gij = ¢,k/{5ij — qa’l'j (24)

where §;; is the Kronecker delta.
The small strain—displacement relation is given by

8,']' = %(ui,j + Ujj) (25)

where ¢; is the strain and u; is the displacement vector.
Compatibility conditions must hold to ensure three displacements can be determined from the six strain
components. The compatibility condition is given by Eq. (2.6)

Epti Emjt Eije1 = 0 (2.6)
Quasi-static charge balance in the absence of free charge is given by
D;=0 (2.7)
where D; is the electric displacement vector.
Eq. (2.7) is satisfied when the electric displacement is found from the curl of a vector potential,
D, =Y €pu (2.8)

For two-dimensional problems, the electric displacement vector potential reduces to the following scalar
potential,

lP3 = lp3 ()CI,XZ) (29)
In quasi-static problems the curl of the electric field is zero.
Eix €i=0 (2.10)

This condition is satisfied when the electric field vector is represented by the gradient of the electric
potential.

E=-9, (2.11)

The coupled form of the electro-mechanical constitutive law can be written in several forms. The Stroh
formalism typically uses the form given by Egs. (2.12a,b).

g = Cﬁk;«ﬁk; — ek (2.12a)

Di = €& + K?kEk (212b)

where Cj;,, are the stiffness coefficients at constant electric field, e;; are the piezoelectric coefficients, and
are the dielectric coefficients at fixed strain.
The orthotropic rescaling technique may use one of two forms of the constitutive law given below,

&jj = Sg‘klakl + dk,'jEk (213&)

D; = diyo + K Ex (2.13b)
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&ij = Si 0k + ZuijDr (2.14a)

E; = —gwou + B.D (2.14b)

where 57, and s, are the open circuit and short circuit compliance coefficients, respectively, g; and dy;; are
the piezoelectric coefficients, and £}, and «, are the dielectric impermittivity and permittivity coefficients at
fixed stress, respectively.

Solutions to certain boundary value problems are more easily attained by satisfying traction and surface
charge which are more readily applied using Egs. (2.14a, b) and applying Egs. (2.6) and (2.10). For
example, the impermeable crack problem requires applying zero electric displacement normal to the crack
face. This is achieved by using the electric displacement vector potential given by Eq. (2.8). If electric
potential boundary conditions are preferred (such as a conducting crack which requires a zero electric
potential across the crack face), the constitutive law given by Egs. (2.13a, b) can be used by applying Egs.
(2.6) and (2.7).

Relations between the internal fields and the surface quantities are given by Eqgs. (2.15) and (2.16).

w=_Dn (2.16)

where ¢; is the traction vector on the surface, #; is a unit vector normal to the surface, and w is the surface
charge density. The mechanical displacement and the electric potential are continuous from the specified
surface value to the material just beneath the surface. These boundary conditions will be used in solving the
crack problem.

2.1. Material properties

The general solutions presented here using the orthotropic rescaling and the Stroh formalism technique
focuses on two-dimensional problems. The determination of plane stress and plane strain field quantities
requires decoupling the plane and anti-plane problems. For the case of the anisotropic elastic medium,
symmetry in the elastic coefficients and a few minimal restrictions on the coefficients leads to uncoupled
anti-plane and in-plane deformation (Ting, 1996). When considering plane problems, the in-plane dis-
placements (u; and u,) are only functions of the in-plane coordinates, x; and x,, while the displacement
perpendicular to the plane (u3) is independent. Uncoupled anti-plane deformation requires the out of plane
shear coupling elastic coefficients to be zero. Using Voigt notation (Malvern, 1969), the elastic shear
coupling coefficients that must be zero are given by Eq. (2.17).

Cly=Ci5=Cy=Cy;s=Cs=C5=0 (2.17)

Poled piezoelectric ceramic materials and some piezoelectric single crystal cuts are transverse isotropic
and no shear coupling exists; therefore, in-plane loading does not induce any anti-plane deformation. The
non-zero elastic, piezoelectric and dielectric coefficients are given in Voight notation in Appendix A. A
comment on notation: although the polarization direction is typically taken to be the x; direction in the
piezoelectric literature, the two-dimensional problems discussed in the following sections take the polari-
zation direction to be in the x, direction for consistency with the fracture mechanics literature. This requires
a change of subscripts on all published piezoelectric material coefficients.
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3. Orthotropic rescaling

The absence of shear coupling in transversely isotropic piezoelectric materials allows the orthotropic
rescaling technique discussed by Suo et al. (1991) for elastic materials to be extended to piezoelectric
materials. This class of piezoelectric materials (poled in the x, direction) has transverse isotropic symmetry
about the poling axis.

3.1. Stress governing equations

The equations for the plane piezoelectric problem poled in the x, direction are developed assuming plane
stress. The plane strain case requires some additional algebra to determine the material coefficients. This
is done in Appendix A. The constitutive law governing strain, Eq. (2.12), is substituted into strain com-
patibility, Eq. (2.6), and reduced using the Airy stress function, Eq. (2.3), and the electric displacement
potential, Eq. (2.9).

SO P aros + 2(5D 00 + 25015) Pa1os + Sy @it = (28112 + 211) Paam + €23 (3.1)

The electric displacement potential terms in Eq. (3.1) must be eliminated using rescaling to further re-
duce Eq. (3.1) to the biharmonic equation governing the stress field in rescaled coordinates. The curl-free
electric field is applied to Eq. (2.14b) and the result is used to eliminate these terms. It is expanded for the
in-plane piezoelectric problem and given by Eq. (3.2).

—(go1 +28112)P 122 — £22P 111 = B} P32 + 55,31 (3.2)

A fourth order partial differential equation is obtained by differentiating Eq. (3.2) with respect to x;. The
resulting equation is then multiplied by a decoupling coefficient B.

Bl—(g211 +28112) P 1122 — £220P 1111 = B Y3122 + B3, P3111] (3.3)
The electric displacement potential is eliminated by adding Eq. (3.3) to Eq. (3.1) and determining the
necessary conditions to impose on the decoupling coefficient B. This gives Eq. (3.4).
(SzDzzz — Bgn) P 11 + [2(51D122 + 2S11)212) — B(ga11 +2g112)| P 1122 + 51D111q§,2222
= (2g112 + &1 + BBY,) W32 + (222 + BB3,) Vani (3.4)

The decoupling coefficient, B, must simultaneously satisfy two different conditions (typically exclusive),
which are given by Eq. (3.5).

2
B—_ (g1 +a g112) _ _gzqzz (3.5)
ﬁll ﬁ22
The constraint given by Eq. (3.5) can be cast into the following ratio of piezoelectric and permittivity
ratios.

/3_31:8'211 +2g112 (3.6)
B &222

When Eq. (3.6) is satisfied, a rescaling parameter can be introduced.
)~Cl = X1 (37)

)NCZ = dXy (38)
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where
0 0 oy 0
Sl R 3.9
aX] 6%1 6x| 63?1 ( )
and
0 0 0x, 0
s A el 3.10
axz aifz axz aaiz ( )
By using the rescaled coordinate system (X;,X,), Eq. (3.4) is transformed to Eq. (3.11).
2(SD + 2SD ) — B(g211 + 2g112) a4sD
@ 2 1122 1212 - [EE0 I S 3.11
e [ S — Bgm nz ¥ 9y — Bgmy P ( )

To reduce Eq. (3.11) to the biharmonic equation in the rescaled coordinates, the rescaling parameter is
defined as,

D — B
= [ t8m (3.12)
ST111

Substituting Eq. (3.12) into Eq. (3.11) gives
Qi +20'® 15+ @355 =0 (3.13)
where

o = 2(st1p + 281315) — B(gar +28112) (3.14)
2\/3?111 (55, — Bgm)

When p’ =1 Eq. (3.13) reduces to the biharmonic equation in the rescaled coordinates. This result al-
lows previously determined elasticity solutions to be utilized to solve orthotropic piezoelectric problems.
The factor, p/, typically ranges between 0.77 and 1.31 for poled PZT materials. Numerical examples will be
given which compare the “idealized” case, to real material coefficients by use of the Stroh formalism.

The rescaled governing equation is thus given by Eq. (3.15).

Vi =0 (3.15)

To solve Eq. (3.15), the boundary conditions must be mapped into the (X;,X,) coordinates. This will be
addressed in Section 5.

3.2. Electrical field and electric displacement governing equations

The electrical components cannot be decoupled from the stress field. They must be directly determined
by solving Eq. (3.2). This equation is an inhomogeneous partial differential equation that can be simplified
by employing the decoupling coefficient given by Eq. (3.6).

Eq. (3.2) is normalized with respect to the permittivity in the x, direction.

H 2
Y31 +ﬂ—éllp3,2z = _<M)¢,221 —&#‘D,m (3.16)
P2 P2 P2
It can be shown that particular solution given by Eq. (3.17) satisfies Eq. (3.16) when the decoupling ratio
holds. The particular solution given by Eq. (3.17) was simplified using a different form of the piezoelectric
cocfficients (IEEE, 1987), —g2,/f35, = dm

V= —dm®, (3.17)

where the superscript p defines the particular component of the solution.
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The homogeneous solution is found by setting Eq. (3.16) equal to zero and rescaling the coordinates
using the following equations,

X] = X1 (318)

Xy = bX2 (319)
[

b=, [t2 (3.20)
B

This gives Laplace’s equation in the rescaled coordinate system where the superscript h defines the
homogeneous component of the solution.

VIl = 0 (3.21)

To determine the electric displacement components, the homogeneous solution is rescaled to the original
coordinate system and the particular solution is added to the final result.

Py =)+ ¥h (3.22)

The boundary conditions are then applied in the original coordinate system to determine the electric
displacement components. The boundary conditions for the asymptotic crack problem will be given in
Section 3.

4. Stroh’s formalism

The Stroh formalism solves the governing equations by assuming a generalized two-dimensional dis-
placement field that is a function of (x;,x,) only. The displacement field is introduced by utilizing a set of
complex planes (z;) where i = 1 to 3 for the two-dimensional case.

u; = 2R€{ ZAlﬁif(Z/)qj} (4.1)

Zj =X +px2 (4.2)

The complex coefficients 4;;, ¢;, and p; are constants to be determined.
The electric field is included in Eq. (4.1) by defining u3 as the electric potential.

Ei = _I/l3,l‘ (43)

The stress and electric displacement components are rewritten in matrix form to make use of the for-
mulation developed by Stroh.

2i=0y fori=12 and X;=D; fori=3 (4.4)

Xo=0p fori=12 and X, =D, fori=3 (4.5)

The stress tensor and electric displacement vector can be represented by a generalized vector potential,
¢;. By comparing Eqs. (2.2) and (2.8), the Airy stress potential and electric displacement potential can be
related to the generalized stress vector potential.

i =@ =—Puncp (Lk=1,2) (4.6)
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o= =Pn €as  (i,k=1,2) (4.7)
==, =", (i=3) (4.8)
o=@, =-Y (i=3) (4.9)

The generalized vector potential can be related to the complex function given by Eq. (4.1) through
substitution into the constitutive law, Egs. (2.12a,b).

3
¢ = 2Re{ ZBtjf(Zj)qj} (4.10)

The complex constants, B;;, are related to 4;; and material coefficients (Ting, 1996).
Upon substituting displacements and the electric potential into the constitutive relation, an eigenvector
problem is developed by applying Eqgs. (2.1) and (2.7).

(Cluu + ewjas)(9p + pdp)(dn + pon) =0 (4.11a)

(e,-kgak — kaag)(éil —|—p5,~2)(511 +p612) =0 (411b)
and the eigenvalues, p,. The eigenvectors, B;

This provides a means for determining the eigenvectors, A4;;, s
are found through constitutive relations or reformulating the eigenvector problem to solve 4;;, B;;, and p;
simultaneously (Ting, 1996).

The final form of the generalized stress potential given by Eq. (4.10) and the generalized displacement
field given by Eq. (4.1) is written in terms of the Stroh eigenvectors (a;, b;), the complex function (f(z;)), and
a set of boundary condition constants (g;). The eigenvectors are given in matrix form where only three of
the six eigenvectors are utilized in the solution.

A= [31 a 33] (412)

B=[b b, bs] (4.13)

The solution utilizes three eigenvectors which are chosen to have positive imaginary components. The
other three vectors are linear dependent in three-dimensional space; therefore, are not necessary to uniquely
solve the problem (Stroh, 1958).

5. Fracture problem

Asymptotic crack tip fields are found using orthotropic rescaling and compared to the Stroh formalism.
The crack is assumed to be contained within an infinite piezoelectric medium with impermeable crack faces.
The origin of the coordinate system is located at the crack tip as shown in Fig. 1. A closed form solution is
obtained for the stress and electric displacement fields using the orthotropic rescaling given by Egs. (5.1)
and (5.2) when p’ = 1 and decoupling holds,

011 ~
= L cos 0 sin (
o = = a
12 \/2_m7 2

0
2

(b)) . .
(1 + sin (
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Fig. 1. Crack geometry used in the contour plots. A crack length of 2¢ = 10 mm, constant radius of 100 pm around the crack tip are
used in all plots.

[D1 } A sin (g) + oy - [% sin (g) + 4 cos (g) sin (g) sin (%)]
D]~ ; 0 e (30

2 B cos (g) + dn - [% cos (g) {1 + sin (g) sin (%)} — = cos (g)}
where a and b are rescaling coeficients from Egs. (3.12) and (3.20), d; is the piezoelectric coefficient and
(7,0) and (7, 0) are the rescaled coordinate systems, and the strain and electric field are determined from the

constitutive law. Details of the solution will be presently shown.
The definitions of stress and electric displacement intensity factors are given by,

KI = hng V 271?7'0'22‘9:0 (53)
KIV = 111’1’(’)1 \% 27'CVD2|9:0 (54)

It will be shown that the Mode I and Mode IV intensity factors are not affected by the coordinate rescaling,
therefore standard solutions for Mode I intensity factors can be readily applied to Eq. (5.1) since stress is
independent of applied electric fields. Special consideration must be taken to determine the Mode IV
intensity factor. The center crack panel is a special case of decoupling, K1y = D°v/nc, where DY is the
electric displacement applied at the far-field boundary and 2c is the crack length. This is not automatically
satisfied in fracture problems with other geometries. Other crack geometries require determining the electric
displacement at 6 = 0° near the crack tip to determine Kjy. This can be achieved analytically for certain
geometries, otherwise finite element analysis is typically employed.

5.1. Orthotropic rescaling details

5.1.1. Stress fields

The advantage of the orthotropic rescaling technique is that it allows existing isotropic elastic and
isotropic dielectric solutions to be applied to orthotropic materials in the rescaled coordinate system. For
special classes of piezoelectric material, the relations provided by the decoupling coefficient and p’' =1
results in the biharmonic equation. This constraint decouples applied electric field from affecting stress
concentrations. The electric displacement is determined from the particular and homogeneous solution
given in Section 3.2. The electric field is then determined from the constitutive law.
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The stress components are presented first in terms of the rescaled coordinates and then scaled back to the
original coordinate system. An ‘“‘idealized” set of material properties is presented to show that stress
contours from the orthotropic rescaling and the Stroh formalism are equivalent in this case. It is also shown
that the electric field does not induce stress near the crack tip for the “idealized” case.

To apply the isotropic Mode I elasticity solution, the boundary conditions on the crack surface are
evaluated in the rescaled coordinates. The following equations relate the rescaled coordinate plane (7, 0) to
the original coordinates (x,x,),

7 =x1 +a’x; (5.5a)
0 = tan! <@> (5.5b)
X1

From Eq. (5.5b), 0 and 0 are equivalent at +7. This provides the necessary condition to satisfy the zero
traction boundary condition on the crack surface.
The asymptotic stress fields are given in the rescaled coordinates for Mode I loading by analogy with the

isotropic solution.
~ 1 —sin (Q) in (—)
= % cos (g) sin ( )2 (705 (5.6)
1 4 sin (g) sin (3 )

When the stress components are mapped back to the original (xi,x,) coordinate system, Eq. (5.1) is ob-
tained.

The stress components in Egs. (5.6) and (5.1) are written in terms of the Mode I stress intensity factor,
K7, which is identical to the isotropic definition of stress intensity, Eq. (5.3) when the rescaling factor is
applied on the x, coordinate axis, as given by Eq. (5.5a). The stress components are shown to differ from the
isotropic solution by the rescaling parameter, a. When the rescaling parameter, a = 1, the isotropic stress
fields are recovered.

Q
[SJIS=1]

Q Q
[N TR Y
P =

o

5.1.2. Electric displacement fields

The electric displacement components near a crack tip are determined for the limiting case of an
impermeable crack. The homogeneous solution is first determined in terms of unknown constants and then
the particular solution is added to the result. The unknown constant is determined by applying the
impermeable crack face boundary conditions and Eq. (5.4). Since the stress concentration is decoupled
from applied electrical loading, it is not necessary to obtain the stress solution simultaneously to determine
the boundary condition constants.

Laplace’s equation was obtained by rescaling the coordinate system according to Eqs. (3.18)—(3.20). The
following equations relate the rescaled coordinate plane (7, 0) to the original coordinates (x,x,),

7 =x1 +b'x; (5.7a)
0 =tan™' <bx2> (5.7b)
X1

The homogeneous component of the electric displacement potential is found using a complex potential,
,{,g — P = —(4, +1B))F g0 (5.8)

where z = ¥, + ix, = #[cos(0) + isin(0)].
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The homogeneous components of the electric displacement are given in polar coordinates by the fol-
lowing equations,

D = Re{ ; %} = (A+ 1)F*{d4; sin[(Z + 1)0] + B; cos[(4 + 1)0]} (5.9)
Db = —Re{ 66?:3‘} = (A+ 1)i*{4; cos[(4 + 1)0] — B, sin[(4 + 1)0]} (5.10)

The particular solution must be added prior to applying the boundary conditions. The total electric
displacement is given in the real coordinate system by the following equations by using Egs. (2.8) and
(3.17). For brevity, the field components are given in terms of Cartesian coordinates.

D :D?+D$:Dlll+d222612 (511)

Dy = D} + D} = DS + don (5.12)

The impermeable crack is defined by setting Dy|,_., = D,|,_., = 0. The particular solution is zero on the
crack face (02],_,, = 0), therefore only the homogeneous solution is needed to determine the unknown
constants, 4, and B;.

The asymptotic solution is found by ensuring finite electrical energy density and infinite electric dis-
placement at the crack tip. This requires A = —1/2 and B, = 0. The constant, 4;, is determined by using the
boundary condition given by Eq. (5.4).

Ky A; K

=Ky A, K 5.13

2|(;,0 \/2_7'57’ 2\/’7 222 \/ﬁ ( )
2

4= \/;(KIV — dmKy) (5.14)

The electric displacement components can be written in terms of the stress intensity factors and a
function of the two sets of rescaled coordinates, (7,0) and (7, 0) as previously given by Eq. (5.2).

Both rescaled coordinate systems were used in determining the electric displacement field quantities near
the crack tip. The electric displacement in the x, direction decouples from the Mode I stress intensity di-
rectly in front of the crack tip as defined in Eq. (5.13).

5.2. Stroh approach

Asymptotic field solutions around a crack tip are determined using the Stroh formalism. The governing
equations developed by Stroh furnish the relations for creating a numerical algorithm to determine the
eigenvalues and eigenvectors for a given set of material parameters. Detailed numerical results of the
eigenvalue problem are given in Appendix A. The eigenvectors are used together with a complex function
and boundary conditions constants to determine the stress fields.

The complex function used in Egs. (4.1) and (4.10) must be determined to find the field quantities around
a crack tip. The function must ensure finite strain energy and infinite stress and electric displacement at the
crack tip. The following function satisfies these constraints in the electro-elastic body.

f(z) =z (5.15)

The unknown vector quantity, ¢;, given in Eqgs. (4.1) and (4.10) is found in order to satisfy the boundary
conditions. This vector consists of three components for two-dimensional in-plane piezoelectric problems.
Since an asymptotic crack solution is utilized, an assumption about the electric boundary condition is made
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to simplify the analysis. An electrically impermeable crack is assumed (a limiting case, McMeeking, 1999)
so that electric field concentration effects are captured near the crack tip. The following boundary condi-
tions are utilized on the crack face.

g;n; = 0 (5163,)

The three boundary condition constants are complex; therefore, six equations are required to find both
the real and imaginary components. According to Sih et al. (1965) the stress intensity factor applied to an
isotropic material is equivalent to that in an orthotropic material. Suo et al. (1992) extended this relation to
piezoelectric material. Based on their results, Eqgs. (5.17a) and (5.17b) are used to uniquely solve the
boundary condition constants for Mode I and Mode IV loading. When the material is under symmetrical
loading (Mode I and IV), an additional boundary condition for no rotation is applied ahead of the crack
tip, (5.17c).

K;
Oanlyy = ——— (5.17a)
2nr
Ky
Dslp_ g = —= 5.17b
2‘970 \/2_7; ( )
ws)p_y =0 (5.17¢)
The field quantities near the crack tip are given below in terms of the eigenvector solution,
[ uy Anqivz + A12q2y/22 + A13934/73
75} = 2Re Az](]] \/Z_] +A22q2\/2_2 +A23C]3\/Z_3 (518)
Kz A3191+/21 + A3qa\/z2 + A33q34/23
[ 621 ] Biiq1/\/zZi + B2q2/\/Z2 + B13q3/\/Z3
02 | =Req | Baqi/\/zi + Bng2/\/Z2 + Buqs/\/z3 (5.19)
| D, | B31q1//z1 + Bnqa/\/z2 + Bxq3/\/Z3
[ 011 ] Biigipi//Z1i + Buaqapa/\/Z2 + Bi3qzps/\/Z3
oy | = —Req | Baiqipi/\/Z1 + Bngap>/ /72 + Bnqsps/ /73 (5.20)
| Dy | B31g1p1/\/Z1 + B3gapa/\/Z2 + Bisqaps/\/Z3

Eqgs. (5.19) and (5.20) are compared to the closed form solutions determined by the orthotropic rescaling
technique in the following section. Exact solutions are found when decoupling holds and p’ = 1. Differences
in the field quantities are compared using material coefficients for TRS600. !

6. Comparison of results

The orthotropic rescaling technique is directly compared to the Stroh formalism by evaluating chan-
ges in computed field quantities with respect to changes in material properties. The results are com-

' TRS Ceramics, Inc. State College, PA.
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pared using an “idealized” set of material properties that satisfy the decoupling ratio and p’ = 1; and a
real set of material properties with ratios that do not satisfy the decoupling ratio and p’ = 1. In addition,
a parametric study illustrates differences in maximum principal stress when the decoupling ratio is greater
or less than the ideal value. Contour plots are shown which plot stress components around the crack tip
over a constant radius. Vector plots are used to compare electric displacement and electric fields near the
crack tip.

The material properties employed in the analysis are based on TRS600. Material coefficients, s, g1, and
B7,, were adjusted to satisfy the necessary ratios that gives the biharmonic equation. The material properties
used in the orthotropic rescaling technique are given in Table 1. These coefficients were converted to the
effective plane strain coefficients for direct comparison to the Stroh formalism, see Appendix A for details.
The poling axis for the material is the x, direction.

Since the Stroh formalism uses another form of the constitutive law, the material coefficients given in
Table 1 are computed in terms of the coefficients given by Eqgs. (2.12a,b). The equivalent material properties
are found in Table 2.

Contour plots representing the stress components around the crack tip are first given for the “idealized”
case and then compared to the “real” case. The angular dependence on stress is plotted over a region
of constant radius and crack orientation as shown in Fig. 1. Traction and surface charge are applied at the

Table 1
Piezoelectric material properties (plane strain coefficients) used to plot stress fields using the orthotropic rescaling technique
TRS600 ACTUAL “IDEALIZED”
B5, (V3/N) 2.72x107 2.72x107
B, (VAN) 2.54x107 3.74x 107
g (m?/C) 0.0167 0.0167
g1 (m?/C) —-0.0128 —-0.0128
gi6 (m?/C) 0.0216 0.0318
s (m?/N) 9.49x 10712 9.49x 10712
52 (m?/N) 8.27x 10712 8.27x 10712
sP, (m?/N) -3.94x 10712 -3.94x 10712
s (m?/N) 2.66x 1071 2.34x107!
B/ B 0.78 1.14
(2211 + &16) /822 0.53 1.14
0 0.92 1.00

The material coefficients (s%, g1, and f7,) have been adjusted to meet the necessary ratios given by the decoupling coefficient and
p’ = 1. The decoupling ratio has been given for the plane strain case.

Table 2
Material properties related to the coefficients in Table 1 which are used to calculate stress fields using the Stroh formalism
TRS600 ACTUAL “IDEALIZED”
K5, (N/V?) 1.44%1078 1.44x1078
K (N/V?) 2.33x10°8 1.24x10°8
ey (C/m?) 30.38 30.38
ey (Clm?) -3.73 -3.73
eis (C/m?) 18.89 16.85
% (N/m?) 8.16x10' 8.16x 10"
& (N/m?) 5.97x 10" 5.97x 10"
¢, (N/m?) 3.20% 101 3.20% 101
c(fé (N/m?) 2.22x 10" 1.98x 10"

The material coefficients (c%, ejs and k%) correspond to the coefficients that were adjusted in Table 1.
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far-field boundary in the x, direction. Mode I and Mode IV intensity factors are applied by letting K; = 1
MPa /m and Ky = 0.001 C/m?\/m.

Fig. 2 depicts the crack tip stress field for the maximum principal stress in the “idealized” piezoelectric
material. The plot includes the isotropic solution for comparison to the orthotropic material behavior. The
stress contour under applied surface charge was not included since it had no effect on the stress fields for the
“idealized” case. The orthotropic rescaling technique and Stroh’s formalism give identical stress fields.

Fig. 3 represents how the orthotropic rescaling was less accurate when the actual material properties for
TRS600 were used with Eq. (5.1). The isotropic solution is not included in the figure. Since the electric field
is no longer decoupled from the stress field, the effect of surface charge is included in Fig. 3 by use of the
Stroh formalism. The largest deviation from the exact solution was directly ahead of the crack tip. The
lower accuracy of stress ahead of the crack tip was determined to emanate from the stress components o;.

—— Storh formalism
----- I sotropic soln. 120
---- Orthotropicrescaling|

150/

180

210N

270

Fig. 2. Stress contour around the crack tip for the maximum principal stress, oy, from 0 = n to 6 = —z when » = 100 pm when
rescaling conditions are met.

— Stroh Ky, = 0.001C/m2 m¥2
_____ Stroh Ky, = 0C/m2m¥2

........ Stroh K,y =-0.001C/m2m¥/2
-=== Orthotropic rescaling

150/

180

210

270

Fig. 3. Resulting stress contour for the maximum principal stress, o;, when the actual material parameters are used; 0 = nto 0 = —n
when r = 100 pm.
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The effects of the decoupling coefficient are illustrated in Fig. 4. The maximum principal stress is shown
to change when the permittivity ratio deviates from the “idealized” value if the material is under both Mode
I and Mode IV loading. In the example, K; = 1 MPa/m and Ky = 0.002 C/m?,/m was used. If the
permittivity ratio is greater than the ““idealized” case, the maximum principal stress increases directly ahead
of the crack tip. Conversely, if the ratio decreases, the maximum principal stress decreases ahead of the
crack tip.

The changes in stress directly ahead of the crack tip can be described by the amount of electric dis-
placement permitted by the dielectric constant (f7,). As the permittivity constant in the x; direction in-
creases, the electric field drives more strain in this direction causing an incompatibility. The strain
incompatibility is compensated by larger stresses in the x; direction (o) which alters the maximum
principal stress at this point. A converse argument can be made when the permittivity coefficient decreases
below the ““idealized” case.

""" 12B%4 /B
o= By, /B0,y idealized”
—— 08B, /B

150

180

210K

270

Fig. 4. Parametric study of the effects of the decoupling ratio on the maximum principal stress (1) near the crack tip when Ky = 0.002
C/m? y/m. The decoupling ratio, ], /f5,, was modified while holding the piezoelectric coefficients constant.
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Fig. 5. Vector plot of electric displacement for TRS600 material properties under Mode I and Mode IV loading (K; = 1 MPa /m,
Kiv = 0.001 C/m?+/m). The solutions are practically identical. The Stroh formalism is shown by dotted arrows; the orthotropic
rescaling result is shown by solid arrows.



2914 C.S. Lynch, W.S. Oates | International Journal of Solids and Structures 41 (2004) 2899-2917

The electric displacement is evaluated under a combined Mode I and Mode IV loading (K; = 1 MPa v/m
and Ky = 0.001 C/m?+/m). A vector plot is used to represent the direction of electric displacement in a
confined region near the crack tip. The remnant polarization is not included in the plots. The crack tip is
drawn on the plot as a reference point. Exact correlation was found for the electric displacement and
electric field when using ‘““idealized” material properties. Fig. 5 qualitatively represent how the piezoelectric
material responds to electro-mechanical loading for TRS600. Negligible differences in electric displacement
were observed. Similar results were found for the electric field components.

7. Concluding remarks

A generalized form of the Airy stress potential was used to formulate closed form solutions for linear
piezoelectric boundary value problems. A new technique using orthotropic rescaling was presented which
identified certain ratios of elastic, piezoelectric, and dielectric material coefficients necessary to reduce the
formulation to the biharmonic equation. Previously solved isotropic elasticity solutions were utilized to
determine stress fields near the crack tip.

The orthotropic rescaling technique was verified using Stroh’s formalism for an “idealized” set of
material coefficients. The orthotropic rescaling technique gives exact correlation to Stroh’s method for the
“idealized” set of material coefficients. The technique was less accurate when an actual set of material
properties was employed, although reasonable estimations were achieved under mechanical loading. The
stress fields from the rescaling technique should be avoided when large electrical loading is present. Con-
siderable deviations in stress were observed directly ahead of the crack tip when a surface charge was
present.

The electric displacement and electric field determined from orthotropic rescaling matched well with the
Stroh formalism under electro-mechanical loading for the “idealized” case and for TRS600 material
properties. The orthotropic rescaling appears to be a robust technique for determining electric field and
electric displacement components near a crack tip.

The decoupling coefficient was shown to influence the stress components near a crack tip, although for a
certain ratio of piezoelectric and dielectric coefficients, the stress components are independent of an applied
electric field.

Acknowledgements

Notes and discussions with Professor Robert McMeeking at the University of California, Santa Barbara
and Professor Jianmin Qu at the Georgia Institute of Technology were of immense help in this work and
greatly appreciated. The authors would also like to acknowledge their appreciation for the support of Dr.
Wes Hackenburger and Paul Rehrig of TRS Ceramics, State College PA and of AFOSR through grant,
F49620-02-1-0030. Support through ARO grant DAAD 19-02-1-0241 is gratefully appreciated.

Appendix A
A.1. Plane strain coefficients

A set of plane strain coefficients were used to directly compare the orthotropy rescaling technique to the
Stroh formalism. The coordinate axis is assumed to be aligned with the material coordinates. For transverse
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isotropic piezoelectric materials poled in the two direction, the constitutive law is written in the following
form.

T rsPsP s% 0 0 070 [0 gn 07
75 shoshos% 0 0 0 oy 0 g»n O D,
EN shosposp 00 0 03 n 0 g1 O D, (AD)
Va 0 0 0 Sgé 0 0 04 gi6 0 0 D
v 0 0 0 0 s2 0]]os 0 0 0 ’
L 76 L0 0 0 0 0 s&] Lol L0 0 g
Fo
G2
E] 0 0 0 0 0 gi6 ﬁtlj] 0 0 D]
o
Er|=—|g1 & g1 0 0 0 0_3 +10 B, 0D (A.2)
Es 0 0 0 g6 0 0 ! 0 0 p,||Ds
as
L 06

The following effective elastic constants were used in the orthotropic rescaling for the plane strain
problem, where the plane of interest is (x;,x,). All other material coefficients were equivalent to the plane
stress case.

D D
) sTys
St =11 — l;D13 (A.3)
11
s 5P
S =53 — 1SzD12 (A.4)
11
' s sP
Sty = Sy — 1S2D13 (A.5)
11
/ SID2
81 = &n — p & (A.6)
1
/ S1D3
81 =81 — p &1 (A.7)
ST
o’ a 821821
B =Pn+ D (A.8)

11

A.2. Stroh eigensolution

The Stroh eigenvalues/eigenvectors are presented for both the “idealized” case and real set of material
properties used in the analysis. For the decoupled case, a degeneracy exists where two of the eigenvalues/
eigenvectors are repeated. The boundary condition constants (corresponding to Ky =1 MPa+/m and
Ky = 0.001 C/m? y/m) is included in the boundary condition constants.
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Idealized properties:

p = 1152
P =1.152i
py = 0.935i

[—1.51i x 107" —1.51i x 107" 36.48i x 107!
A= 125x 107" 1.25x 107" 50.90 x 107!

0.01 0.01 ~1.00
0.76 0.76 (—5.30 + 2.20i) x 1013
B= 0.66i 0.66i (—2.40 — 5.80i) x 1013
3.34i x 10710 3.34i x 10710 —2.86 x 1078

q=| (=96.80 — 6.17i) x 10"

(96.80 + 6.17i) x 101!
9.14 x 106 — 6.86i x 10°

Actual material properties:

pi = —0.31 + 1.06i
P =031 + 1.06i
py =123

[(0.26 — 1.44i) x 10711 (—0.26 — 1.44i) x 10-11  —0.73i x 101!
A=|(1.26-0.28i) x 10711 (1.26+0.28i) x 10~'1i ~ 0.27 x 1011

0.01 —0.01i 0.01 4 0.01i 0.027
0.74 0.74 0.78
B= 0.19 + 0.64i —0.19 + 0.64i 0.63i
| (—0.93 +3.45) x 10710 (0.93 4 3.45i) x 10710 —3.38 x 1010

(9.67 — 4.33i) x 10°
q=| (=9.67 —4.33i) x 10°
—7.42 x 1071 + 8.27i x 10°
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