
International Journal of Solids and Structures 41 (2004) 2899–2917

www.elsevier.com/locate/ijsolstr
Orthotropic rescaling for crack tip fields in linear
piezoelectric materials

Christopher S. Lynch *, William S. Oates

The GWW School of Mechanical Engineering, The Georgia Institute of Technology, 801 Ferst Dr. NW MRDC,

Atlanta, GA 30332-0405, USA

Received 5 December 2003; received in revised form 5 December 2003

Available online 3 March 2004

Abstract

Analysis of stress fields in a linear elastic–piezoelectric–dielectric medium requires use of anisotropic elasticity theory.

Many researchers employ the Stroh formalism, which requires the solution of a sixth order characteristic equation

involving material coefficients. This equation must be solved numerically for each material composition to obtain the

eigenvalues and eigenvectors that give the resulting field quantities. The focus of this work is the development of a

closed form solution for the electro-mechanical crack tip fields in piezoelectric materials using orthotropic rescaling to

reduce the governing field equations to the biharmonic equation and the Poisson equation. Solutions for an isotropic

linear elastic material are utilized to obtain solutions for the anisotropic piezoelectric material. This leads to closed form

solutions for the fields in terms of ratios of certain elastic, dielectric, and piezoelectric coefficients. Orthotropic rescaling

and the Stroh formalism are compared and recommendations are made for when and when not to use the orthotropic

rescaling approach.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Stroh�s formalism; Orthotropic rescaling; Piezoelectric; Anisotropic fracture
1. Introduction

The reliability of piezoelectric materials is of interest due to their abundant applications in smart systems
and structures. Devices which implement piezoelectric materials include active vibration dampers, mirror

positioners, accelerometers, micropumps, and fuel injectors. Although these materials have considerable

technological capabilities, they are limited by fatigue and fracture.

Recent work in the area of fracture mechanics has been focused on determining crack tip fields in

anisotropic piezoelectric materials. The coupled electro-mechanical behavior poses a challenge in obtaining

closed form solutions that describe the field quantities. Ting (1996) has described the Stroh formalism in
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detail for elastic materials. This technique has been extended to piezoelectric materials by Suo et al. (1992),

Pak (1992), McMeeking (1999), and Zhang et al. (2001). Sosa (1990) used a similar technique by deter-

mining a general solution in terms of complex potentials.

Stroh�s formalism makes use of an eigenvector problem that is developed by applying mechanical
equilibrium and charge compatibility to the constitutive equations. A vector potential representing dis-

placement and electric potential is assumed. This automatically satisfies strain compatibility and curl-free

electric field, but involves solving an eigenvector problem that requires the solution of a sixth order

polynomial for each material composition. This makes it very difficult to ascertain the role of material

anisotropy in the fracture process.

A different approach is presented here that explicitly solves the field equations in terms of material

coefficients using a modified orthotropic rescaling approach. Suo et al. (1991) determined the stress fields in

elastic composite materials by employing orthotropic rescaling. In orthotropic elastic solids, the coordinate
axes can be rescaled to obtain the biharmonic equation when a certain ratio of elastic coefficients is unity.

For piezoelectric materials, one additional constraint is necessary. A specific ratio of piezoelectric and

dielectric coefficients decouples the mechanical and electrical terms. When this decoupling ratio is realized

and the biharmonic equation is attained, closed form solutions for the stress components can be deter-

mined. The decoupling coefficient is then utilized to determine the electrical components by solving the

Poisson equation.

The first part of this work summarizes the governing equations and general solutions to the coupled

piezoelectric problem for the two approaches. In the orthotropic rescaling, the rescaling technique and
decoupling coefficients are determined which lead to the biharmonic equation and the Poisson equation in

the rescaled coordinate system. A brief review of Stroh�s formalism is given with emphasis on the relation

between the Stroh complex potentials and the potentials used in the orthotropic rescaling.

The second part of the work applies the orthotropic rescaling and the Stroh formalism technique to the

crack problem in an infinite piezoelectric medium. The two solution techniques are shown to be in exact

agreement when specific ratios of the material coefficients hold. Actual material properties are then applied

and deviations in the predicted stress fields near the crack tip are addressed. A parametric study is con-

ducted to determine the effect of variations in the decoupling coefficient on the maximum principal stress
near the crack tip.
2. Governing equations

The governing equations are presented in indicial notation, with summation implied over repeated

indices. The small strain assumption is used since the results are to be applied to piezoelectric ceramics and

crystals that strain less than 1%. The effect of a polar medium inducing a non-symmetric stress tensor is
neglected. Kamlah (2001) showed that the stress induced by the polarity of the medium is on the order of 1

MPa, negligible relative to the far higher stresses found in the elastic problem. Under these assumptions, the

following field equations govern linear piezoelectric solids.

Mechanical equilibrium of stress is given by the divergence of the second order stress tensor when body

forces are negligible.
rji;j ¼ 0 ð2:1Þ
The mechanical equilibrium equation is satisfied when the stress is given by the double curl of a second

order potential,
rij ¼ �Umn;kl 2ikm2jnl ð2:2Þ
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where Uij is the second order stress potential and 2pki is the components of the permutation symbol (Weber,

1948). For two-dimensional problems, the second order stress potential reduces to the Airy stress potential

given by Eq. (2.3).
U ¼ U33ðx1; x2Þ ð2:3Þ

In this case the stress field is represented by the following equation,
rij ¼ U;kkdij � U;ij ð2:4Þ

where dij is the Kronecker delta.

The small strain–displacement relation is given by
eij ¼ 1
2
ðui;j þ uj;iÞ ð2:5Þ
where eij is the strain and ui is the displacement vector.

Compatibility conditions must hold to ensure three displacements can be determined from the six strain

components. The compatibility condition is given by Eq. (2.6)
2pki2mjl eij;kl ¼ 0 ð2:6Þ

Quasi-static charge balance in the absence of free charge is given by
Di;i ¼ 0 ð2:7Þ

where Di is the electric displacement vector.

Eq. (2.7) is satisfied when the electric displacement is found from the curl of a vector potential,
Dp ¼ Wi;k 2pki ð2:8Þ

For two-dimensional problems, the electric displacement vector potential reduces to the following scalar

potential,
W3 ¼ W3ðx1; x2Þ ð2:9Þ

In quasi-static problems the curl of the electric field is zero.
Ei;k 2pki¼ 0 ð2:10Þ
This condition is satisfied when the electric field vector is represented by the gradient of the electric

potential.
Ei ¼ �/;i ð2:11Þ
The coupled form of the electro-mechanical constitutive law can be written in several forms. The Stroh

formalism typically uses the form given by Eqs. (2.12a,b).
rij ¼ CE
ijklekl � ekijEk ð2:12aÞ

Di ¼ eiklekl þ je
ikEk ð2:12bÞ
where CE
ijkl are the stiffness coefficients at constant electric field, ekij are the piezoelectric coefficients, and je

ik

are the dielectric coefficients at fixed strain.

The orthotropic rescaling technique may use one of two forms of the constitutive law given below,
eij ¼ sEijklrkl þ dkijEk ð2:13aÞ

Di ¼ diklrkl þ jr
ikEk ð2:13bÞ
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eij ¼ sDijklrkl þ gkijDk ð2:14aÞ
Ei ¼ �giklrkl þ br
ikDk ð2:14bÞ
where sDijkl and sEijkl are the open circuit and short circuit compliance coefficients, respectively, gkij and dkij are
the piezoelectric coefficients, and br

ik and jr
ik are the dielectric impermittivity and permittivity coefficients at

fixed stress, respectively.

Solutions to certain boundary value problems are more easily attained by satisfying traction and surface
charge which are more readily applied using Eqs. (2.14a, b) and applying Eqs. (2.6) and (2.10). For

example, the impermeable crack problem requires applying zero electric displacement normal to the crack

face. This is achieved by using the electric displacement vector potential given by Eq. (2.8). If electric

potential boundary conditions are preferred (such as a conducting crack which requires a zero electric

potential across the crack face), the constitutive law given by Eqs. (2.13a, b) can be used by applying Eqs.

(2.6) and (2.7).

Relations between the internal fields and the surface quantities are given by Eqs. (2.15) and (2.16).
ti ¼ rjinj ð2:15Þ
x ¼ �Dini ð2:16Þ
where ti is the traction vector on the surface, nj is a unit vector normal to the surface, and x is the surface

charge density. The mechanical displacement and the electric potential are continuous from the specified

surface value to the material just beneath the surface. These boundary conditions will be used in solving the

crack problem.
2.1. Material properties

The general solutions presented here using the orthotropic rescaling and the Stroh formalism technique

focuses on two-dimensional problems. The determination of plane stress and plane strain field quantities

requires decoupling the plane and anti-plane problems. For the case of the anisotropic elastic medium,

symmetry in the elastic coefficients and a few minimal restrictions on the coefficients leads to uncoupled
anti-plane and in-plane deformation (Ting, 1996). When considering plane problems, the in-plane dis-

placements (u1 and u2) are only functions of the in-plane coordinates, x1 and x2, while the displacement

perpendicular to the plane (u3) is independent. Uncoupled anti-plane deformation requires the out of plane

shear coupling elastic coefficients to be zero. Using Voigt notation (Malvern, 1969), the elastic shear

coupling coefficients that must be zero are given by Eq. (2.17).
C14 ¼ C15 ¼ C24 ¼ C25 ¼ C46 ¼ C56 ¼ 0 ð2:17Þ
Poled piezoelectric ceramic materials and some piezoelectric single crystal cuts are transverse isotropic

and no shear coupling exists; therefore, in-plane loading does not induce any anti-plane deformation. The

non-zero elastic, piezoelectric and dielectric coefficients are given in Voight notation in Appendix A. A

comment on notation: although the polarization direction is typically taken to be the x3 direction in the

piezoelectric literature, the two-dimensional problems discussed in the following sections take the polari-

zation direction to be in the x2 direction for consistency with the fracture mechanics literature. This requires
a change of subscripts on all published piezoelectric material coefficients.
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3. Orthotropic rescaling

The absence of shear coupling in transversely isotropic piezoelectric materials allows the orthotropic

rescaling technique discussed by Suo et al. (1991) for elastic materials to be extended to piezoelectric
materials. This class of piezoelectric materials (poled in the x2 direction) has transverse isotropic symmetry

about the poling axis.

3.1. Stress governing equations

The equations for the plane piezoelectric problem poled in the x2 direction are developed assuming plane

stress. The plane strain case requires some additional algebra to determine the material coefficients. This

is done in Appendix A. The constitutive law governing strain, Eq. (2.12), is substituted into strain com-
patibility, Eq. (2.6), and reduced using the Airy stress function, Eq. (2.3), and the electric displacement

potential, Eq. (2.9).
sD1111U;2222 þ 2ðsD1122 þ 2sD1212ÞU;1122 þ sD2222U;1111 ¼ ð2g112 þ g211ÞW3;122 þ g222W3;111 ð3:1Þ
The electric displacement potential terms in Eq. (3.1) must be eliminated using rescaling to further re-

duce Eq. (3.1) to the biharmonic equation governing the stress field in rescaled coordinates. The curl-free

electric field is applied to Eq. (2.14b) and the result is used to eliminate these terms. It is expanded for the

in-plane piezoelectric problem and given by Eq. (3.2).
�ðg211 þ 2g112ÞU;122 � g222U;111 ¼ br
11W3;22 þ br

22W3;11 ð3:2Þ
A fourth order partial differential equation is obtained by differentiating Eq. (3.2) with respect to x1. The
resulting equation is then multiplied by a decoupling coefficient B.
B½�ðg211 þ 2g112ÞU;1122 � g222U;1111 ¼ br
11W3;122 þ br

22W3;111� ð3:3Þ
The electric displacement potential is eliminated by adding Eq. (3.3) to Eq. (3.1) and determining the

necessary conditions to impose on the decoupling coefficient B. This gives Eq. (3.4).
ðsD2222 � Bg222ÞU;1111 þ ½2ðsD1122 þ 2sD1212Þ � Bðg211 þ 2g112Þ�U;1122 þ sD1111U;2222

¼ ð2g112 þ g211 þ Bbr
11ÞW3;122 þ ðg222 þ Bbr

22ÞW3;111 ð3:4Þ
The decoupling coefficient, B, must simultaneously satisfy two different conditions (typically exclusive),

which are given by Eq. (3.5).
B ¼ �ðg211 þ 2g112Þ
br
11

¼ � g222
br
22

ð3:5Þ
The constraint given by Eq. (3.5) can be cast into the following ratio of piezoelectric and permittivity

ratios.
br
11

br
22

¼ g211 þ 2g112
g222

ð3:6Þ
When Eq. (3.6) is satisfied, a rescaling parameter can be introduced.
~x1 ¼ x1 ð3:7Þ

~x2 ¼ ax2 ð3:8Þ
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where
o

ox1
¼ o

o~x1

o~x1
ox1

¼ o

o~x1
ð3:9Þ
and
o

ox2
¼ o

o~x2

o~x2
ox2

¼ a
o

o~x2
ð3:10Þ
By using the rescaled coordinate system ð~x1;~x2Þ, Eq. (3.4) is transformed to Eq. (3.11).
U;1111 þ a2
2ðsD1122 þ 2sD1212Þ � Bðg211 þ 2g112Þ

sD2222 � Bg222

� �
U;11~2~2 þ

a4sD1111
sD2222 � Bg222

U;~2~2~2~2 ¼ 0 ð3:11Þ
To reduce Eq. (3.11) to the biharmonic equation in the rescaled coordinates, the rescaling parameter is

defined as,
a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sD2222 � Bg222

sD1111

s
ð3:12Þ
Substituting Eq. (3.12) into Eq. (3.11) gives
U;1111 þ 2q0U;11~2~2 þ U;~2~2~2~2 ¼ 0 ð3:13Þ

where
q0 ¼ 2ðsD1122 þ 2sD1212Þ � Bðg211 þ 2g112Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sD1111ðsD2222 � Bg222Þ

p ð3:14Þ
When q0 ¼ 1 Eq. (3.13) reduces to the biharmonic equation in the rescaled coordinates. This result al-

lows previously determined elasticity solutions to be utilized to solve orthotropic piezoelectric problems.

The factor, q0, typically ranges between 0.77 and 1.31 for poled PZT materials. Numerical examples will be

given which compare the ‘‘idealized’’ case, to real material coefficients by use of the Stroh formalism.

The rescaled governing equation is thus given by Eq. (3.15).
r4U ¼ 0 ð3:15Þ

To solve Eq. (3.15), the boundary conditions must be mapped into the ð~x1;~x2Þ coordinates. This will be

addressed in Section 5.

3.2. Electrical field and electric displacement governing equations

The electrical components cannot be decoupled from the stress field. They must be directly determined

by solving Eq. (3.2). This equation is an inhomogeneous partial differential equation that can be simplified
by employing the decoupling coefficient given by Eq. (3.6).

Eq. (3.2) is normalized with respect to the permittivity in the x2 direction.
W3;11 þ
br
11

br
22

W3;22 ¼ � g211 þ 2g112
br
22

� �
U;221 �

g222
br
22

U;111 ð3:16Þ
It can be shown that particular solution given by Eq. (3.17) satisfies Eq. (3.16) when the decoupling ratio

holds. The particular solution given by Eq. (3.17) was simplified using a different form of the piezoelectric

coefficients (IEEE, 1987), �g222=b
r
22 ¼ d222
Wp
3 ¼ �d222U;1 ð3:17Þ
where the superscript p defines the particular component of the solution.
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The homogeneous solution is found by setting Eq. (3.16) equal to zero and rescaling the coordinates

using the following equations,
�x1 ¼ x1 ð3:18Þ

�x2 ¼ bx2 ð3:19Þ

b ¼
ffiffiffiffiffiffiffi
br
22

br
11

s
ð3:20Þ
This gives Laplace�s equation in the rescaled coordinate system where the superscript h defines the

homogeneous component of the solution.
r2Wh
�3 ¼ 0 ð3:21Þ
To determine the electric displacement components, the homogeneous solution is rescaled to the original

coordinate system and the particular solution is added to the final result.
W3 ¼ Wh
3 þWp

3 ð3:22Þ
The boundary conditions are then applied in the original coordinate system to determine the electric

displacement components. The boundary conditions for the asymptotic crack problem will be given in

Section 5.
4. Stroh’s formalism

The Stroh formalism solves the governing equations by assuming a generalized two-dimensional dis-
placement field that is a function of ðx1; x2Þ only. The displacement field is introduced by utilizing a set of

complex planes ðzjÞ where i ¼ 1 to 3 for the two-dimensional case.
ui ¼ 2Re
X3
j¼1

Aijf ðzjÞqj

( )
ð4:1Þ

zj ¼ x1 þ pjx2 ð4:2Þ
The complex coefficients Aij, qj, and pj are constants to be determined.
The electric field is included in Eq. (4.1) by defining u3 as the electric potential.
Ei ¼ �u3;i ð4:3Þ
The stress and electric displacement components are rewritten in matrix form to make use of the for-

mulation developed by Stroh.
Ri1 ¼ ri1 for i ¼ 1; 2 and Ri1 ¼ D1 for i ¼ 3 ð4:4Þ

Ri2 ¼ ri2 for i ¼ 1; 2 and Ri2 ¼ D2 for i ¼ 3 ð4:5Þ

The stress tensor and electric displacement vector can be represented by a generalized vector potential,

ui. By comparing Eqs. (2.2) and (2.8), the Airy stress potential and electric displacement potential can be
related to the generalized stress vector potential.
Ri1 ¼ �ui;2 ¼ �U;k2 2ik3 ði; k ¼ 1; 2Þ ð4:6Þ
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Ri2 ¼ ui;1 ¼ U;k1 2ik3 ði; k ¼ 1; 2Þ ð4:7Þ

Ri1 ¼ �ui;2 ¼ W3;2 ði ¼ 3Þ ð4:8Þ

Ri2 ¼ ui;1 ¼ �W3;1 ði ¼ 3Þ ð4:9Þ
The generalized vector potential can be related to the complex function given by Eq. (4.1) through

substitution into the constitutive law, Eqs. (2.12a,b).
ui ¼ 2Re
X3
j¼1

Bijf ðzjÞqj

( )
ð4:10Þ
The complex constants, Bij, are related to Aij and material coefficients (Ting, 1996).
Upon substituting displacements and the electric potential into the constitutive relation, an eigenvector

problem is developed by applying Eqs. (2.1) and (2.7).
ðCE
ijklak þ ekija3Þðdj1 þ pdj2Þðdl1 þ pdl2Þ ¼ 0 ð4:11aÞ

ðeiklak � je
ika3Þðdi1 þ pdi2Þðdl1 þ pdl2Þ ¼ 0 ð4:11bÞ
This provides a means for determining the eigenvectors, Aij, and the eigenvalues, pi. The eigenvectors, Bij,

are found through constitutive relations or reformulating the eigenvector problem to solve Aij, Bij, and pi
simultaneously (Ting, 1996).

The final form of the generalized stress potential given by Eq. (4.10) and the generalized displacement
field given by Eq. (4.1) is written in terms of the Stroh eigenvectors ðai; biÞ, the complex function ðf ðziÞÞ, and
a set of boundary condition constants ðqjÞ. The eigenvectors are given in matrix form where only three of

the six eigenvectors are utilized in the solution.
A ¼ a1 a2 a3½ � ð4:12Þ

B ¼ b1 b2 b3½ � ð4:13Þ

The solution utilizes three eigenvectors which are chosen to have positive imaginary components. The

other three vectors are linear dependent in three-dimensional space; therefore, are not necessary to uniquely

solve the problem (Stroh, 1958).
5. Fracture problem

Asymptotic crack tip fields are found using orthotropic rescaling and compared to the Stroh formalism.

The crack is assumed to be contained within an infinite piezoelectric medium with impermeable crack faces.

The origin of the coordinate system is located at the crack tip as shown in Fig. 1. A closed form solution is

obtained for the stress and electric displacement fields using the orthotropic rescaling given by Eqs. (5.1)

and (5.2) when q0 ¼ 1 and decoupling holds,
r11

r12

r22

2
64

3
75 ¼ KIffiffiffiffiffiffiffi

2p~r
p cos

~h
2

 ! a2 1� sin
~h
2

� �
sin 3~h

2

� �� �
a sin ~h

2

� �
cos 3~h

2

� �
1þ sin

~h
2

� �
sin 3~h

2

� �� �

2
66666664

3
77777775

ð5:1Þ
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Fig. 1. Crack geometry used in the contour plots. A crack length of 2c ¼ 10 mm, constant radius of 100 lm around the crack tip are

used in all plots.
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D1

D2

� �
¼

�bKIVffiffiffiffiffi
2p�r

p sin
�h
2

� �
þ d222

KIffiffiffiffi
2p

p bffiffi
�r

p sin
�h
2

� �
þ affiffi

~r
p cos

~h
2

� �
sin

~h
2

� �
sin 3~h

2

� �� �
KIVffiffiffiffiffi
2p�r

p cos
�h
2

� �
þ d222

KIffiffiffiffi
2p

p 1ffiffi
~r

p cos
~h
2

� �
1þ sin

~h
2

� �
sin 3~h

2

� �n o
� 1ffiffi

�r
p cos

�h
2

� �� �
2
664

3
775 ð5:2Þ
where a and b are rescaling coefficients from Eqs. (3.12) and (3.20), d222 is the piezoelectric coefficient and

ð~r; ~hÞ and ð�r; �hÞ are the rescaled coordinate systems, and the strain and electric field are determined from the

constitutive law. Details of the solution will be presently shown.

The definitions of stress and electric displacement intensity factors are given by,
KI ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
r22jh¼0 ð5:3Þ
KIV ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
D2jh¼0 ð5:4Þ
It will be shown that the Mode I and Mode IV intensity factors are not affected by the coordinate rescaling,

therefore standard solutions for Mode I intensity factors can be readily applied to Eq. (5.1) since stress is

independent of applied electric fields. Special consideration must be taken to determine the Mode IV

intensity factor. The center crack panel is a special case of decoupling, KIV ¼ D1
2

ffiffiffiffiffi
pc

p
, where D1

2 is the
electric displacement applied at the far-field boundary and 2c is the crack length. This is not automatically

satisfied in fracture problems with other geometries. Other crack geometries require determining the electric

displacement at h ¼ 0� near the crack tip to determine KIV. This can be achieved analytically for certain

geometries, otherwise finite element analysis is typically employed.
5.1. Orthotropic rescaling details

5.1.1. Stress fields

The advantage of the orthotropic rescaling technique is that it allows existing isotropic elastic and

isotropic dielectric solutions to be applied to orthotropic materials in the rescaled coordinate system. For

special classes of piezoelectric material, the relations provided by the decoupling coefficient and q0 ¼ 1

results in the biharmonic equation. This constraint decouples applied electric field from affecting stress

concentrations. The electric displacement is determined from the particular and homogeneous solution
given in Section 3.2. The electric field is then determined from the constitutive law.
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The stress components are presented first in terms of the rescaled coordinates and then scaled back to the

original coordinate system. An ‘‘idealized’’ set of material properties is presented to show that stress

contours from the orthotropic rescaling and the Stroh formalism are equivalent in this case. It is also shown

that the electric field does not induce stress near the crack tip for the ‘‘idealized’’ case.
To apply the isotropic Mode I elasticity solution, the boundary conditions on the crack surface are

evaluated in the rescaled coordinates. The following equations relate the rescaled coordinate plane ð~r; ~hÞ to
the original coordinates ðx1; x2Þ,
~r2 ¼ x21 þ a2x22 ð5:5aÞ

~h ¼ tan�1 ax2
x1

� �
ð5:5bÞ
From Eq. (5.5b), ~h and h are equivalent at �p. This provides the necessary condition to satisfy the zero

traction boundary condition on the crack surface.

The asymptotic stress fields are given in the rescaled coordinates for Mode I loading by analogy with the

isotropic solution.
r~1~1

r~1~2

r~2~2

2
4

3
5 ¼ KIffiffiffiffiffiffiffi

2p~r
p cos

~h
2

 ! 1� sin
~h
2

� �
sin 3~h

2

� �
sin

~h
2

� �
cos 3~h

2

� �
1þ sin

~h
2

� �
sin 3~h

2

� �
2
6664

3
7775 ð5:6Þ
When the stress components are mapped back to the original ðx1; x2Þ coordinate system, Eq. (5.1) is ob-

tained.

The stress components in Eqs. (5.6) and (5.1) are written in terms of the Mode I stress intensity factor,

KI, which is identical to the isotropic definition of stress intensity, Eq. (5.3) when the rescaling factor is

applied on the x2 coordinate axis, as given by Eq. (5.5a). The stress components are shown to differ from the

isotropic solution by the rescaling parameter, a. When the rescaling parameter, a ¼ 1, the isotropic stress

fields are recovered.

5.1.2. Electric displacement fields

The electric displacement components near a crack tip are determined for the limiting case of an

impermeable crack. The homogeneous solution is first determined in terms of unknown constants and then

the particular solution is added to the result. The unknown constant is determined by applying the

impermeable crack face boundary conditions and Eq. (5.4). Since the stress concentration is decoupled

from applied electrical loading, it is not necessary to obtain the stress solution simultaneously to determine

the boundary condition constants.

Laplace�s equation was obtained by rescaling the coordinate system according to Eqs. (3.18)–(3.20). The
following equations relate the rescaled coordinate plane ð�r; �hÞ to the original coordinates ðx1; x2Þ,
�r2 ¼ x21 þ b2x22 ð5:7aÞ

�h ¼ tan�1 bx2
x1

� �
ð5:7bÞ
The homogeneous component of the electric displacement potential is found using a complex potential,
Wh
�3 ¼ �C�zkþ1 ¼ �ðAk þ iBkÞ�rkþ1eðkþ1Þ�h ð5:8Þ
where �z ¼ �x1 þ i�x2 ¼ �r½cosð�hÞ þ i sinð�hÞ�.
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The homogeneous components of the electric displacement are given in polar coordinates by the fol-

lowing equations,
Dh
�r ¼ Re

1

�r
oWh

3

o�h

� 	
¼ ðkþ 1Þ�rkfAk sin½ðkþ 1Þ�h� þ Bk cos½ðkþ 1Þ�h�g ð5:9Þ

Dh
�h ¼ �Re

oWh
3

o�r

� 	
¼ ðkþ 1Þ�rkfAk cos½ðkþ 1Þ�h� � Bk sin½ðkþ 1Þ�h�g ð5:10Þ
The particular solution must be added prior to applying the boundary conditions. The total electric
displacement is given in the real coordinate system by the following equations by using Eqs. (2.8) and

(3.17). For brevity, the field components are given in terms of Cartesian coordinates.
D1 ¼ Dh
1 þ Dp

1 ¼ Dh
1 þ d222r12 ð5:11Þ

D2 ¼ Dh
2 þ Dp

2 ¼ Dh
2 þ d222r22 ð5:12Þ
The impermeable crack is defined by setting Dhjh¼�p ¼ D2jh¼�p ¼ 0. The particular solution is zero on the

crack face (r22jh¼�p ¼ 0), therefore only the homogeneous solution is needed to determine the unknown

constants, Ak and Bk.

The asymptotic solution is found by ensuring finite electrical energy density and infinite electric dis-

placement at the crack tip. This requires k ¼ �1=2 and Bk ¼ 0. The constant, Ak, is determined by using the

boundary condition given by Eq. (5.4).
D2jh¼0 ¼
KIVffiffiffiffiffiffiffi
2pr

p ¼ Ak

2
ffiffi
r

p þ d222
KIffiffiffiffiffiffiffi
2pr

p ð5:13Þ

Ak ¼
ffiffiffi
2

p

r
ðKIV � d222KIÞ ð5:14Þ
The electric displacement components can be written in terms of the stress intensity factors and a

function of the two sets of rescaled coordinates, ð~r; ~hÞ and ð�r; �hÞ as previously given by Eq. (5.2).

Both rescaled coordinate systems were used in determining the electric displacement field quantities near

the crack tip. The electric displacement in the x2 direction decouples from the Mode I stress intensity di-

rectly in front of the crack tip as defined in Eq. (5.13).

5.2. Stroh approach

Asymptotic field solutions around a crack tip are determined using the Stroh formalism. The governing

equations developed by Stroh furnish the relations for creating a numerical algorithm to determine the

eigenvalues and eigenvectors for a given set of material parameters. Detailed numerical results of the

eigenvalue problem are given in Appendix A. The eigenvectors are used together with a complex function

and boundary conditions constants to determine the stress fields.

The complex function used in Eqs. (4.1) and (4.10) must be determined to find the field quantities around

a crack tip. The function must ensure finite strain energy and infinite stress and electric displacement at the
crack tip. The following function satisfies these constraints in the electro-elastic body.
f ðzjÞ ¼
ffiffiffiffi
zj

p ð5:15Þ
The unknown vector quantity, qj, given in Eqs. (4.1) and (4.10) is found in order to satisfy the boundary
conditions. This vector consists of three components for two-dimensional in-plane piezoelectric problems.

Since an asymptotic crack solution is utilized, an assumption about the electric boundary condition is made
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to simplify the analysis. An electrically impermeable crack is assumed (a limiting case, McMeeking, 1999)

so that electric field concentration effects are captured near the crack tip. The following boundary condi-

tions are utilized on the crack face.
1 T
rjini ¼ 0 ð5:16aÞ

Dini ¼ 0 ð5:16bÞ
The three boundary condition constants are complex; therefore, six equations are required to find both

the real and imaginary components. According to Sih et al. (1965) the stress intensity factor applied to an

isotropic material is equivalent to that in an orthotropic material. Suo et al. (1992) extended this relation to
piezoelectric material. Based on their results, Eqs. (5.17a) and (5.17b) are used to uniquely solve the

boundary condition constants for Mode I and Mode IV loading. When the material is under symmetrical

loading (Mode I and IV), an additional boundary condition for no rotation is applied ahead of the crack

tip, (5.17c).
r22jh¼0 ¼
KIffiffiffiffiffiffiffi
2pr

p ð5:17aÞ

D2jh¼0 ¼
KIVffiffiffiffiffiffiffi
2pr

p ð5:17bÞ

u2jh¼0 ¼ 0 ð5:17cÞ
The field quantities near the crack tip are given below in terms of the eigenvector solution,
u1
u2
/

2
4

3
5 ¼ 2Re

A11q1
ffiffiffiffi
z1

p þ A12q2
ffiffiffiffi
z2

p þ A13q3
ffiffiffiffi
z3

p

A21q1
ffiffiffiffi
z1

p þ A22q2
ffiffiffiffi
z2

p þ A23q3
ffiffiffiffi
z3

p

A31q1
ffiffiffiffi
z1

p þ A32q2
ffiffiffiffi
z2

p þ A33q3
ffiffiffiffi
z3

p

2
4

3
5

8<
:

9=
; ð5:18Þ

r21

r22

D2

2
4

3
5 ¼ Re

B11q1=
ffiffiffiffi
z1

p þ B12q2=
ffiffiffiffi
z2

p þ B13q3=
ffiffiffiffi
z3

p

B21q1=
ffiffiffiffi
z1

p þ B22q2=
ffiffiffiffi
z2

p þ B23q3=
ffiffiffiffi
z3

p

B31q1=
ffiffiffiffi
z1

p þ B32q2=
ffiffiffiffi
z2

p þ B33q3=
ffiffiffiffi
z3

p

2
4

3
5

8<
:

9=
; ð5:19Þ

r11

r21

D1

2
4

3
5 ¼ �Re

B11q1p1=
ffiffiffiffi
z1

p þ B12q2p2=
ffiffiffiffi
z2

p þ B13q3p3=
ffiffiffiffi
z3

p

B21q1p1=
ffiffiffiffi
z1

p þ B22q2p2=
ffiffiffiffi
z2

p þ B23q3p3=
ffiffiffiffi
z3

p

B31q1p1=
ffiffiffiffi
z1

p þ B32q2p2=
ffiffiffiffi
z2

p þ B33q3p3=
ffiffiffiffi
z3

p

2
4

3
5

8<
:

9=
; ð5:20Þ
Eqs. (5.19) and (5.20) are compared to the closed form solutions determined by the orthotropic rescaling
technique in the following section. Exact solutions are found when decoupling holds and q0 ¼ 1. Differences

in the field quantities are compared using material coefficients for TRS600. 1
6. Comparison of results

The orthotropic rescaling technique is directly compared to the Stroh formalism by evaluating chan-

ges in computed field quantities with respect to changes in material properties. The results are com-
RS Ceramics, Inc. State College, PA.
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pared using an ‘‘idealized’’ set of material properties that satisfy the decoupling ratio and q0 ¼ 1; and a

real set of material properties with ratios that do not satisfy the decoupling ratio and q0 ¼ 1. In addition,

a parametric study illustrates differences in maximum principal stress when the decoupling ratio is greater

or less than the ideal value. Contour plots are shown which plot stress components around the crack tip
over a constant radius. Vector plots are used to compare electric displacement and electric fields near the

crack tip.

The material properties employed in the analysis are based on TRS600. Material coefficients, sD66, g16, and
br
11, were adjusted to satisfy the necessary ratios that gives the biharmonic equation. The material properties

used in the orthotropic rescaling technique are given in Table 1. These coefficients were converted to the

effective plane strain coefficients for direct comparison to the Stroh formalism, see Appendix A for details.

The poling axis for the material is the x2 direction.
Since the Stroh formalism uses another form of the constitutive law, the material coefficients given in

Table 1 are computed in terms of the coefficients given by Eqs. (2.12a,b). The equivalent material properties

are found in Table 2.

Contour plots representing the stress components around the crack tip are first given for the ‘‘idealized’’

case and then compared to the ‘‘real’’ case. The angular dependence on stress is plotted over a region

of constant radius and crack orientation as shown in Fig. 1. Traction and surface charge are applied at the
Table 1

Piezoelectric material properties (plane strain coefficients) used to plot stress fields using the orthotropic rescaling technique

TRS600 ACTUAL ‘‘IDEALIZED’’

br
22 (V2/N) 2.72· 107 2.72· 107

br
11 (V2/N) 2.54· 107 3.74· 107

g22 (m2/C) 0.0167 0.0167

g21 (m2/C) )0.0128 )0.0128
g16 (m2/C) 0.0216 0.0318

sD11 (m2/N) 9.49· 10�12 9.49· 10�12

sD22 (m2/N) 8.27· 10�12 8.27· 10�12

sD12 (m2/N) )3.94· 10�12 )3.94· 10�12

sD66 (m2/N) 2.66· 10�11 2.34· 10�11

br
11=b

r
22 0.78 1.14

ðg211 þ g16Þ=g222 0.53 1.14

q0 0.92 1.00

The material coefficients (sD66, g16, and br
11) have been adjusted to meet the necessary ratios given by the decoupling coefficient and

q0 ¼ 1. The decoupling ratio has been given for the plane strain case.

Table 2

Material properties related to the coefficients in Table 1 which are used to calculate stress fields using the Stroh formalism

TRS600 ACTUAL ‘‘IDEALIZED’’

je
22 (N/V2) 1.44· 10�8 1.44· 10�8

je
11 (N/V2) 2.33· 10�8 1.24· 10�8

e22 (C/m2) 30.38 30.38

e21 (C/m2) )3.73 )3.73
e16 (C/m2) 18.89 16.85

cE11 (N/m2) 8.16· 1010 8.16· 1010
cE22 (N/m2) 5.97· 1010 5.97· 1010
cE12 (N/m2) 3.20· 1010 3.20· 1010
cE66 (N/m2) 2.22· 1010 1.98· 1010

The material coefficients (cE66, e16 and je
11) correspond to the coefficients that were adjusted in Table 1.
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far-field boundary in the x2 direction. Mode I and Mode IV intensity factors are applied by letting KI ¼ 1

MPa
ffiffiffiffi
m

p
and KIV ¼ 0:001 C/m2

ffiffiffiffi
m

p
.

Fig. 2 depicts the crack tip stress field for the maximum principal stress in the ‘‘idealized’’ piezoelectric

material. The plot includes the isotropic solution for comparison to the orthotropic material behavior. The
stress contour under applied surface charge was not included since it had no effect on the stress fields for the

‘‘idealized’’ case. The orthotropic rescaling technique and Stroh�s formalism give identical stress fields.

Fig. 3 represents how the orthotropic rescaling was less accurate when the actual material properties for

TRS600 were used with Eq. (5.1). The isotropic solution is not included in the figure. Since the electric field

is no longer decoupled from the stress field, the effect of surface charge is included in Fig. 3 by use of the

Stroh formalism. The largest deviation from the exact solution was directly ahead of the crack tip. The

lower accuracy of stress ahead of the crack tip was determined to emanate from the stress components r11.
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Fig. 2. Stress contour around the crack tip for the maximum principal stress, r1, from h ¼ p to h ¼ �p when r ¼ 100 lm when

rescaling conditions are met.
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Fig. 3. Resulting stress contour for the maximum principal stress, r1, when the actual material parameters are used; h ¼ p to h ¼ �p
when r ¼ 100 lm.
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The effects of the decoupling coefficient are illustrated in Fig. 4. The maximum principal stress is shown

to change when the permittivity ratio deviates from the ‘‘idealized’’ value if the material is under both Mode

I and Mode IV loading. In the example, KI ¼ 1 MPa
ffiffiffiffi
m

p
and KIV ¼ 0:002 C/m2

ffiffiffiffi
m

p
was used. If the

permittivity ratio is greater than the ‘‘idealized’’ case, the maximum principal stress increases directly ahead
of the crack tip. Conversely, if the ratio decreases, the maximum principal stress decreases ahead of the

crack tip.

The changes in stress directly ahead of the crack tip can be described by the amount of electric dis-

placement permitted by the dielectric constant ðbr
11Þ. As the permittivity constant in the x1 direction in-

creases, the electric field drives more strain in this direction causing an incompatibility. The strain

incompatibility is compensated by larger stresses in the x1 direction ðr11Þ which alters the maximum

principal stress at this point. A converse argument can be made when the permittivity coefficient decreases

below the ‘‘idealized’’ case.
Fig. 5. Vector plot of electric displacement for TRS600 material properties under Mode I and Mode IV loading (KI ¼ 1 MPa
ffiffiffiffi
m

p
,

KIV ¼ 0:001 C/m2
ffiffiffiffi
m

p
). The solutions are practically identical. The Stroh formalism is shown by dotted arrows; the orthotropic

rescaling result is shown by solid arrows.
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Fig. 4. Parametric study of the effects of the decoupling ratio on the maximum principal stress (r1) near the crack tip when KIV ¼ 0.002

C/m2
ffiffiffiffi
m

p
. The decoupling ratio, br

11=b
r
22, was modified while holding the piezoelectric coefficients constant.
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The electric displacement is evaluated under a combined Mode I and Mode IV loading (KI ¼ 1 MPa
ffiffiffiffi
m

p

and KIV ¼ 0:001 C/m2
ffiffiffiffi
m

p
). A vector plot is used to represent the direction of electric displacement in a

confined region near the crack tip. The remnant polarization is not included in the plots. The crack tip is

drawn on the plot as a reference point. Exact correlation was found for the electric displacement and
electric field when using ‘‘idealized’’ material properties. Fig. 5 qualitatively represent how the piezoelectric

material responds to electro-mechanical loading for TRS600. Negligible differences in electric displacement

were observed. Similar results were found for the electric field components.
7. Concluding remarks

A generalized form of the Airy stress potential was used to formulate closed form solutions for linear

piezoelectric boundary value problems. A new technique using orthotropic rescaling was presented which

identified certain ratios of elastic, piezoelectric, and dielectric material coefficients necessary to reduce the

formulation to the biharmonic equation. Previously solved isotropic elasticity solutions were utilized to

determine stress fields near the crack tip.

The orthotropic rescaling technique was verified using Stroh�s formalism for an ‘‘idealized’’ set of
material coefficients. The orthotropic rescaling technique gives exact correlation to Stroh�s method for the

‘‘idealized’’ set of material coefficients. The technique was less accurate when an actual set of material

properties was employed, although reasonable estimations were achieved under mechanical loading. The

stress fields from the rescaling technique should be avoided when large electrical loading is present. Con-

siderable deviations in stress were observed directly ahead of the crack tip when a surface charge was

present.

The electric displacement and electric field determined from orthotropic rescaling matched well with the

Stroh formalism under electro-mechanical loading for the ‘‘idealized’’ case and for TRS600 material
properties. The orthotropic rescaling appears to be a robust technique for determining electric field and

electric displacement components near a crack tip.

The decoupling coefficient was shown to influence the stress components near a crack tip, although for a

certain ratio of piezoelectric and dielectric coefficients, the stress components are independent of an applied

electric field.
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Appendix A

A.1. Plane strain coefficients

A set of plane strain coefficients were used to directly compare the orthotropy rescaling technique to the

Stroh formalism. The coordinate axis is assumed to be aligned with the material coordinates. For transverse
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isotropic piezoelectric materials poled in the two direction, the constitutive law is written in the following

form.
c1
c2
c3
c4
c5
c6

2
666666664

3
777777775
¼

sD11 sD12 sD13 0 0 0

sD12 sD22 sD12 0 0 0

sD13 sD12 sD11 0 0 0

0 0 0 sD66 0 0

0 0 0 0 sD55 0

0 0 0 0 0 sD66

2
666666664

3
777777775

r1

r2

r3

r4

r5

r6

2
666666664

3
777777775
þ

0 g21 0

0 g22 0

0 g21 0

g16 0 0

0 0 0

0 0 g16

2
666666664

3
777777775

D1

D2

D3

2
64

3
75 ðA:1Þ

E1

E2

E3

2
64

3
75 ¼ �

0 0 0 0 0 g16
g21 g22 g21 0 0 0

0 0 0 g16 0 0

2
64

3
75

r1

r2

r3

r4

r5

r6

2
666666664

3
777777775
þ

br
11 0 0

0 br
22 0

0 0 br
11

2
64

3
75

D1

D2

D3

2
64

3
75 ðA:2Þ
The following effective elastic constants were used in the orthotropic rescaling for the plane strain

problem, where the plane of interest is ðx1; x2Þ. All other material coefficients were equivalent to the plane

stress case.
sD
0

11 ¼ sD11 �
sD13s

D
13

sD11
ðA:3Þ

sD
0

22 ¼ sD22 �
sD12s

D
12

sD11
ðA:4Þ

sD
0

12 ¼ sD12 �
sD12s

D
13

sD11
ðA:5Þ

g022 ¼ g22 �
sD12
sD11

g21 ðA:6Þ

g021 ¼ g21 �
sD13
sD11

g21 ðA:7Þ

br0

22 ¼ br
22 þ

g21g21
sD11

ðA:8Þ
A.2. Stroh eigensolution

The Stroh eigenvalues/eigenvectors are presented for both the ‘‘idealized’’ case and real set of material

properties used in the analysis. For the decoupled case, a degeneracy exists where two of the eigenvalues/
eigenvectors are repeated. The boundary condition constants (corresponding to KI ¼ 1 MPa

ffiffiffiffi
m

p
and

KIV ¼ 0:001 C/m2
ffiffiffiffi
m

p
) is included in the boundary condition constants.
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Idealized properties:
p1 ¼ 1:152i
p2 ¼ 1:152i
p3 ¼ 0:935i

ðA:9Þ

A ¼
�1:51i� 10�11 �1:51i� 10�11 36:48i� 10�11

1:25� 10�11 1:25� 10�11 50:90� 10�11

0:01 0:01 �1:00

2
4

3
5 ðA:10Þ

B ¼
0:76 0:76 ð�5:30þ 2:20iÞ � 10�13

0:66i 0:66i ð�2:40� 5:80iÞ � 10�13

3:34i� 10�10 3:34i� 10�10 �2:86� 10�8

2
4

3
5 ðA:11Þ

q ¼
ð96:80þ 6:17iÞ � 1011

ð�96:80� 6:17iÞ � 1011

9:14� 10�6 � 6:86i� 103

2
4

3
5 ðA:12Þ
Actual material properties:
p1 ¼ �0:31þ 1:06i
p2 ¼ 0:31þ 1:06i
p3 ¼ 1:23i

ðA:13Þ

A ¼
ð0:26� 1:44iÞ � 10�11 ð�0:26� 1:44iÞ � 10�11 �0:73i� 10�11

ð1:26� 0:28iÞ � 10�11 ð1:26þ 0:28iÞ � 10�11i 0:27� 10�11

0:01� 0:01i 0:01þ 0:01i 0:027

2
4

3
5 ðA:14Þ

B ¼
0:74 0:74 0:78

0:19þ 0:64i �0:19þ 0:64i 0:63i
ð�0:93þ 3:45iÞ � 10�10 ð0:93þ 3:45iÞ � 10�10 �3:38� 10�10

2
4

3
5 ðA:15Þ

q ¼
ð9:67� 4:33iÞ � 105

ð�9:67� 4:33iÞ � 105

�7:42� 10�10 þ 8:27i� 105

2
4

3
5 ðA:16Þ
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